Adobe Analytics MCP Server
Create a powerful Model Context Protocol (MCP) server for Adobe Analytics in minutes with our AI Gateway. This guide walks you through setting up seamless analytics integration with enterprise-grade security and instant OAuth authentication.
About Adobe Analytics API
Adobe Analytics is the industry-leading solution for applying real-time analytics and detailed segmentation across all marketing channels. The API provides programmatic access to reports, segments, metrics, and dimensions for comprehensive marketing analytics.
Key Capabilities
- Report Generation: Access any report available in the UI
- Real-time Data: Live metrics and dimensions
- Segmentation: Create and apply complex segments
- Calculated Metrics: Custom metric creation
- Data Warehouse: Large data exports
- Classifications: Metadata management
- Anomaly Detection: AI-powered insights
- Attribution: Multi-touch attribution analysis
API Features
- Analytics 2.0 API: Modern REST interface
- Real-time API: Live data streaming
- Data Insertion API: Custom data import
- OAuth 2.0: Secure authentication
- Bulk API: Large-scale operations
- Admin API: Configuration management
- Discovery API: Metadata exploration
- Report Builder API: Custom reporting
What You Can Do with Adobe Analytics MCP Server
The MCP server transforms Adobe Analytics API into a natural language interface, enabling AI agents to:
Report Generation
-
Standard Reports
- "Show website traffic for last 30 days"
- "Get conversion funnel analysis"
- "Display top pages by visits"
- "Generate revenue report by product"
-
Custom Reports
- "Create report with custom segments"
- "Build multi-dimensional analysis"
- "Apply calculated metrics to report"
- "Generate cohort analysis"
-
Real-time Reports
- "Show current active users"
- "Display real-time conversions"
- "Monitor live campaign performance"
- "Track trending content"
Segmentation
-
Segment Creation
- "Create segment for mobile users"
- "Build high-value customer segment"
- "Define cart abandoners segment"
- "Segment by geographic location"
-
Segment Analysis
- "Compare segments side by side"
- "Analyze segment overlap"
- "Track segment growth"
- "Identify segment characteristics"
-
Sequential Segments
- "Users who viewed then purchased"
- "Multi-session journey segments"
- "Time-based sequential filters"
- "Complex path analysis"
Metrics & Dimensions
-
Standard Metrics
- "Get page views by day"
- "Show unique visitors trend"
- "Calculate bounce rate"
- "Track conversion rate"
-
Calculated Metrics
- "Create revenue per visitor metric"
- "Build custom engagement score"
- "Calculate cart abandonment rate"
- "Define customer lifetime value"
-
Custom Dimensions
- "Track custom variables"
- "Analyze product categories"
- "Monitor campaign parameters"
- "Measure content types"
Data Analysis
-
Trend Analysis
- "Show year-over-year growth"
- "Identify seasonal patterns"
- "Track metric trends"
- "Forecast future performance"
-
Attribution Analysis
- "First-touch attribution report"
- "Last-touch conversion credit"
- "Linear attribution model"
- "Custom attribution rules"
-
Path Analysis
- "Show user journey flows"
- "Identify drop-off points"
- "Analyze navigation paths"
- "Track conversion paths"
Real-time Analytics
-
Live Monitoring
- "Current users on site"
- "Active page views"
- "Real-time events"
- "Live conversion tracking"
-
Alerts & Anomalies
- "Detect traffic anomalies"
- "Alert on metric thresholds"
- "Identify unusual patterns"
- "Monitor performance spikes"
-
Campaign Tracking
- "Live campaign performance"
- "Real-time ROI calculation"
- "Monitor ad effectiveness"
- "Track social media impact"
Data Exports
-
Report Exports
- "Export report to CSV"
- "Generate PDF dashboard"
- "Schedule automated exports"
- "Create Excel workbooks"
-
Data Warehouse
- "Extract large datasets"
- "Custom data exports"
- "Scheduled deliveries"
- "FTP/SFTP uploads"
-
API Data Access
- "Stream to data lake"
- "Real-time data feeds"
- "Bulk data downloads"
- "Incremental updates"
Marketing Performance
-
Campaign Analysis
- "Measure campaign effectiveness"
- "Track marketing channels"
- "Calculate ROI by channel"
- "Compare campaign performance"
-
Content Performance
- "Top performing content"
- "Content engagement metrics"
- "A/B test results"
- "Content velocity tracking"
-
Conversion Optimization
- "Funnel analysis"
- "Cart abandonment tracking"
- "Form completion rates"
- "Checkout optimization"
Classification & Metadata
-
Classification Management
- "Import product categories"
- "Update campaign metadata"
- "Classify content types"
- "Manage taxonomies"
-
SAINT Classifications
- "Upload classification data"
- "Process classification files"
- "Monitor import status"
- "Export classifications"
-
Data Governance
- "Manage data labels"
- "Apply privacy settings"
- "Control data usage"
- "Audit data access"
Prerequisites
- Access to Cequence AI Gateway
- Adobe Analytics account with API access
- Adobe Developer Console access
- Admin permissions for integration setup
Step 1: Create Adobe Analytics Integration
1.1 Access Adobe Developer Console
- Go to console.adobe.io
- Select your organization
- Click Create new project
1.2 Add Analytics API
- Click Add API
- Select Adobe Analytics
- Choose authentication type:
- OAuth for user context
- Service Account (JWT) for server-to-server
1.3 Configure OAuth
-
For OAuth setup:
- Redirect URI:
https://auth.aigateway.cequence.ai/v1/outbound/oauth/callback
- Select required scopes
- Redirect URI:
-
For Service Account:
- Generate public/private key pair
- Download the private key
1.4 Get Credentials
- Copy Client ID
- Copy Client Secret
- Note Organization ID
- Save Technical Account ID (if using JWT)
Step 2-4: Standard Setup
Follow standard steps to access AI Gateway, find Adobe Analytics API, and create MCP server.
Step 5: Configure API Endpoints
- Base URL:
https://analytics.adobe.io
- Select Analytics endpoints:
- Reports API endpoints
- Segments endpoints
- Metrics endpoints
- Dimensions endpoints
- Click Next
Step 6: MCP Server Configuration
- Name: "Adobe Analytics"
- Description: "Marketing analytics and reporting"
- Configure production mode
- Click Next
Step 7: Configure Authentication
- Authentication Type: OAuth 2.0
- Authorization URL:
https://ims-na1.adobelogin.com/ims/authorize/v2
- Token URL:
https://ims-na1.adobelogin.com/ims/token/v3
- Enter Client ID and Secret
- Add required scopes
Available Adobe Analytics OAuth Scopes
Core Analytics Scopes
-
openid
- Basic authentication
- User identification
- Required for OAuth
-
AdobeID
- Adobe ID profile access
- User information
- Account details
-
read_organizations
- List organizations
- Access org details
- View permissions
Analytics-Specific Scopes
-
audiencemanager_api
- Audience management
- Segment sharing
- DMP integration
-
analytics_integration
- Full API access
- Report generation
- Configuration management
- Data access
Additional Permissions
- Report Suite Access
- Configure per report suite
- Read/write permissions
- Admin capabilities
Recommended Scope Combinations
For Reporting:
openid
AdobeID
read_organizations
analytics_integration
For Full Access:
openid
AdobeID
read_organizations
analytics_integration
audiencemanager_api
Step 8-10: Complete Setup
Configure security, choose deployment, and deploy.
Using Your Adobe Analytics MCP Server
With Claude Desktop
{
"servers": {
"adobe-analytics": {
"url": "your-mcp-server-url",
"auth": {
"type": "oauth2",
"client_id": "your-client-id"
}
}
}
}
Natural Language Commands
- "Show website traffic for last 30 days"
- "Create segment for mobile users who purchased"
- "Calculate conversion rate by marketing channel"
- "Generate revenue report by product category"
- "Detect anomalies in today's traffic"
API Integration Example
// Initialize MCP client
const mcpClient = new MCPClient({
serverUrl: 'your-mcp-server-url',
auth: {
type: 'oauth2',
token: 'access-token'
}
});
// Generate traffic report
const trafficReport = await mcpClient.adobeAnalytics.reports.run({
rsid: 'report-suite-id',
globalFilters: [
{
type: 'dateRange',
dateRange: '2025-01-01/2025-01-31'
}
],
metricContainer: {
metrics: [
{ id: 'metrics/visits' },
{ id: 'metrics/visitors' },
{ id: 'metrics/pageviews' },
{ id: 'metrics/bounces' }
]
},
dimension: 'variables/daterangeday',
settings: {
countRepeatInstances: true,
limit: 50
}
});
// Create segment
const segment = await mcpClient.adobeAnalytics.segments.create({
name: 'High-Value Mobile Users',
description: 'Mobile users with high engagement and purchases',
definition: {
container: {
func: 'container',
context: 'visitors',
pred: {
func: 'and',
preds: [
{
func: 'streq',
str: 'Mobile',
val: { func: 'attr', name: 'variables/mobiledevicetype' }
},
{
func: 'ge',
val: { func: 'attr', name: 'metrics/revenue' },
num: 1000
}
]
}
}
}
});
// Create calculated metric
const calculatedMetric = await mcpClient.adobeAnalytics.metrics.create({
name: 'Revenue per Visitor',
description: 'Average revenue generated per unique visitor',
type: 'decimal',
formula: {
func: 'divide',
col1: { func: 'attr', name: 'metrics/revenue' },
col2: { func: 'attr', name: 'metrics/visitors' }
},
precision: 2
});
// Real-time data
const realTimeData = await mcpClient.adobeAnalytics.realtime.get({
reportSuiteID: 'report-suite-id',
metrics: ['instances'],
elements: ['page'],
dateFrom: '-15 minutes',
dateGranularity: 'minute:1'
});
// Run ranked report
const rankedReport = await mcpClient.adobeAnalytics.reports.ranked({
rsid: 'report-suite-id',
dimension: 'variables/product',
globalFilters: [
{
type: 'dateRange',
dateRange: 'LAST_30_DAYS'
}
],
metricContainer: {
metrics: [
{ id: 'metrics/orders' },
{ id: 'metrics/revenue' },
{ id: 'metrics/units' }
]
},
settings: {
limit: 20,
sort: 'metrics/revenue',
sortDirection: 'desc'
}
});
// Anomaly detection
const anomalies = await mcpClient.adobeAnalytics.anomalies.detect({
rsid: 'report-suite-id',
metrics: ['metrics/visits', 'metrics/revenue'],
granularity: 'day',
sensitivity: 0.05,
dateRange: 'LAST_7_DAYS'
});
Common Use Cases
Marketing Analytics
- Campaign performance tracking
- Channel attribution analysis
- Content effectiveness measurement
- Marketing ROI calculation
Customer Analytics
- Behavior segmentation
- Journey mapping
- Lifetime value analysis
- Churn prediction
Real-time Monitoring
- Live traffic tracking
- Campaign launch monitoring
- Anomaly detection
- Performance alerts
Executive Reporting
- KPI dashboards
- Automated reports
- Custom visualizations
- Trend analysis
Security Best Practices
-
OAuth Security:
- Use minimal required scopes
- Implement token refresh
- Monitor API usage
- Rotate credentials regularly
-
Data Protection:
- Apply privacy labels
- Respect data governance
- Implement IP filtering
- Audit data access
-
Access Control:
- Limit report suite access
- Control user permissions
- Monitor API calls
- Set rate limits
Troubleshooting
Common Issues
-
Authentication Errors
- Verify client credentials
- Check organization access
- Validate redirect URI
- Review scope permissions
-
Report Errors
- Check report suite ID
- Verify metric/dimension IDs
- Validate date ranges
- Review segment syntax
-
Rate Limiting
- Monitor API usage
- Implement caching
- Use batch requests
- Add retry logic
Getting Help
- Documentation: AI Gateway Docs
- Support: support@cequence.ai
- Adobe Analytics API: developer.adobe.com/analytics-apis