Skip to main content

Adobe Analytics MCP Server

Create a powerful Model Context Protocol (MCP) server for Adobe Analytics in minutes with our AI Gateway. This guide walks you through setting up seamless analytics integration with enterprise-grade security and instant OAuth authentication.

About Adobe Analytics API

Adobe Analytics is the industry-leading solution for applying real-time analytics and detailed segmentation across all marketing channels. The API provides programmatic access to reports, segments, metrics, and dimensions for comprehensive marketing analytics.

Key Capabilities

  • Report Generation: Access any report available in the UI
  • Real-time Data: Live metrics and dimensions
  • Segmentation: Create and apply complex segments
  • Calculated Metrics: Custom metric creation
  • Data Warehouse: Large data exports
  • Classifications: Metadata management
  • Anomaly Detection: AI-powered insights
  • Attribution: Multi-touch attribution analysis

API Features

  • Analytics 2.0 API: Modern REST interface
  • Real-time API: Live data streaming
  • Data Insertion API: Custom data import
  • OAuth 2.0: Secure authentication
  • Bulk API: Large-scale operations
  • Admin API: Configuration management
  • Discovery API: Metadata exploration
  • Report Builder API: Custom reporting

What You Can Do with Adobe Analytics MCP Server

The MCP server transforms Adobe Analytics API into a natural language interface, enabling AI agents to:

Report Generation

  • Standard Reports

    • "Show website traffic for last 30 days"
    • "Get conversion funnel analysis"
    • "Display top pages by visits"
    • "Generate revenue report by product"
  • Custom Reports

    • "Create report with custom segments"
    • "Build multi-dimensional analysis"
    • "Apply calculated metrics to report"
    • "Generate cohort analysis"
  • Real-time Reports

    • "Show current active users"
    • "Display real-time conversions"
    • "Monitor live campaign performance"
    • "Track trending content"

Segmentation

  • Segment Creation

    • "Create segment for mobile users"
    • "Build high-value customer segment"
    • "Define cart abandoners segment"
    • "Segment by geographic location"
  • Segment Analysis

    • "Compare segments side by side"
    • "Analyze segment overlap"
    • "Track segment growth"
    • "Identify segment characteristics"
  • Sequential Segments

    • "Users who viewed then purchased"
    • "Multi-session journey segments"
    • "Time-based sequential filters"
    • "Complex path analysis"

Metrics & Dimensions

  • Standard Metrics

    • "Get page views by day"
    • "Show unique visitors trend"
    • "Calculate bounce rate"
    • "Track conversion rate"
  • Calculated Metrics

    • "Create revenue per visitor metric"
    • "Build custom engagement score"
    • "Calculate cart abandonment rate"
    • "Define customer lifetime value"
  • Custom Dimensions

    • "Track custom variables"
    • "Analyze product categories"
    • "Monitor campaign parameters"
    • "Measure content types"

Data Analysis

  • Trend Analysis

    • "Show year-over-year growth"
    • "Identify seasonal patterns"
    • "Track metric trends"
    • "Forecast future performance"
  • Attribution Analysis

    • "First-touch attribution report"
    • "Last-touch conversion credit"
    • "Linear attribution model"
    • "Custom attribution rules"
  • Path Analysis

    • "Show user journey flows"
    • "Identify drop-off points"
    • "Analyze navigation paths"
    • "Track conversion paths"

Real-time Analytics

  • Live Monitoring

    • "Current users on site"
    • "Active page views"
    • "Real-time events"
    • "Live conversion tracking"
  • Alerts & Anomalies

    • "Detect traffic anomalies"
    • "Alert on metric thresholds"
    • "Identify unusual patterns"
    • "Monitor performance spikes"
  • Campaign Tracking

    • "Live campaign performance"
    • "Real-time ROI calculation"
    • "Monitor ad effectiveness"
    • "Track social media impact"

Data Exports

  • Report Exports

    • "Export report to CSV"
    • "Generate PDF dashboard"
    • "Schedule automated exports"
    • "Create Excel workbooks"
  • Data Warehouse

    • "Extract large datasets"
    • "Custom data exports"
    • "Scheduled deliveries"
    • "FTP/SFTP uploads"
  • API Data Access

    • "Stream to data lake"
    • "Real-time data feeds"
    • "Bulk data downloads"
    • "Incremental updates"

Marketing Performance

  • Campaign Analysis

    • "Measure campaign effectiveness"
    • "Track marketing channels"
    • "Calculate ROI by channel"
    • "Compare campaign performance"
  • Content Performance

    • "Top performing content"
    • "Content engagement metrics"
    • "A/B test results"
    • "Content velocity tracking"
  • Conversion Optimization

    • "Funnel analysis"
    • "Cart abandonment tracking"
    • "Form completion rates"
    • "Checkout optimization"

Classification & Metadata

  • Classification Management

    • "Import product categories"
    • "Update campaign metadata"
    • "Classify content types"
    • "Manage taxonomies"
  • SAINT Classifications

    • "Upload classification data"
    • "Process classification files"
    • "Monitor import status"
    • "Export classifications"
  • Data Governance

    • "Manage data labels"
    • "Apply privacy settings"
    • "Control data usage"
    • "Audit data access"

Prerequisites

  • Access to Cequence AI Gateway
  • Adobe Analytics account with API access
  • Adobe Developer Console access
  • Admin permissions for integration setup

Step 1: Create Adobe Analytics Integration

1.1 Access Adobe Developer Console

  1. Go to console.adobe.io
  2. Select your organization
  3. Click Create new project

1.2 Add Analytics API

  1. Click Add API
  2. Select Adobe Analytics
  3. Choose authentication type:
    • OAuth for user context
    • Service Account (JWT) for server-to-server

1.3 Configure OAuth

  1. For OAuth setup:

    • Redirect URI:
      https://auth.aigateway.cequence.ai/v1/outbound/oauth/callback
    • Select required scopes
  2. For Service Account:

    • Generate public/private key pair
    • Download the private key

1.4 Get Credentials

  1. Copy Client ID
  2. Copy Client Secret
  3. Note Organization ID
  4. Save Technical Account ID (if using JWT)

Step 2-4: Standard Setup

Follow standard steps to access AI Gateway, find Adobe Analytics API, and create MCP server.

Step 5: Configure API Endpoints

  1. Base URL: https://analytics.adobe.io
  2. Select Analytics endpoints:
    • Reports API endpoints
    • Segments endpoints
    • Metrics endpoints
    • Dimensions endpoints
  3. Click Next

Step 6: MCP Server Configuration

  1. Name: "Adobe Analytics"
  2. Description: "Marketing analytics and reporting"
  3. Configure production mode
  4. Click Next

Step 7: Configure Authentication

  1. Authentication Type: OAuth 2.0
  2. Authorization URL:
    https://ims-na1.adobelogin.com/ims/authorize/v2
  3. Token URL:
    https://ims-na1.adobelogin.com/ims/token/v3
  4. Enter Client ID and Secret
  5. Add required scopes

Available Adobe Analytics OAuth Scopes

Core Analytics Scopes

  • openid

    • Basic authentication
    • User identification
    • Required for OAuth
  • AdobeID

    • Adobe ID profile access
    • User information
    • Account details
  • read_organizations

    • List organizations
    • Access org details
    • View permissions

Analytics-Specific Scopes

  • audiencemanager_api

    • Audience management
    • Segment sharing
    • DMP integration
  • analytics_integration

    • Full API access
    • Report generation
    • Configuration management
    • Data access

Additional Permissions

  • Report Suite Access
    • Configure per report suite
    • Read/write permissions
    • Admin capabilities

For Reporting:

openid
AdobeID
read_organizations
analytics_integration

For Full Access:

openid
AdobeID
read_organizations
analytics_integration
audiencemanager_api

Step 8-10: Complete Setup

Configure security, choose deployment, and deploy.

Using Your Adobe Analytics MCP Server

With Claude Desktop

{
"servers": {
"adobe-analytics": {
"url": "your-mcp-server-url",
"auth": {
"type": "oauth2",
"client_id": "your-client-id"
}
}
}
}

Natural Language Commands

  • "Show website traffic for last 30 days"
  • "Create segment for mobile users who purchased"
  • "Calculate conversion rate by marketing channel"
  • "Generate revenue report by product category"
  • "Detect anomalies in today's traffic"

API Integration Example

// Initialize MCP client
const mcpClient = new MCPClient({
serverUrl: 'your-mcp-server-url',
auth: {
type: 'oauth2',
token: 'access-token'
}
});

// Generate traffic report
const trafficReport = await mcpClient.adobeAnalytics.reports.run({
rsid: 'report-suite-id',
globalFilters: [
{
type: 'dateRange',
dateRange: '2025-01-01/2025-01-31'
}
],
metricContainer: {
metrics: [
{ id: 'metrics/visits' },
{ id: 'metrics/visitors' },
{ id: 'metrics/pageviews' },
{ id: 'metrics/bounces' }
]
},
dimension: 'variables/daterangeday',
settings: {
countRepeatInstances: true,
limit: 50
}
});

// Create segment
const segment = await mcpClient.adobeAnalytics.segments.create({
name: 'High-Value Mobile Users',
description: 'Mobile users with high engagement and purchases',
definition: {
container: {
func: 'container',
context: 'visitors',
pred: {
func: 'and',
preds: [
{
func: 'streq',
str: 'Mobile',
val: { func: 'attr', name: 'variables/mobiledevicetype' }
},
{
func: 'ge',
val: { func: 'attr', name: 'metrics/revenue' },
num: 1000
}
]
}
}
}
});

// Create calculated metric
const calculatedMetric = await mcpClient.adobeAnalytics.metrics.create({
name: 'Revenue per Visitor',
description: 'Average revenue generated per unique visitor',
type: 'decimal',
formula: {
func: 'divide',
col1: { func: 'attr', name: 'metrics/revenue' },
col2: { func: 'attr', name: 'metrics/visitors' }
},
precision: 2
});

// Real-time data
const realTimeData = await mcpClient.adobeAnalytics.realtime.get({
reportSuiteID: 'report-suite-id',
metrics: ['instances'],
elements: ['page'],
dateFrom: '-15 minutes',
dateGranularity: 'minute:1'
});

// Run ranked report
const rankedReport = await mcpClient.adobeAnalytics.reports.ranked({
rsid: 'report-suite-id',
dimension: 'variables/product',
globalFilters: [
{
type: 'dateRange',
dateRange: 'LAST_30_DAYS'
}
],
metricContainer: {
metrics: [
{ id: 'metrics/orders' },
{ id: 'metrics/revenue' },
{ id: 'metrics/units' }
]
},
settings: {
limit: 20,
sort: 'metrics/revenue',
sortDirection: 'desc'
}
});

// Anomaly detection
const anomalies = await mcpClient.adobeAnalytics.anomalies.detect({
rsid: 'report-suite-id',
metrics: ['metrics/visits', 'metrics/revenue'],
granularity: 'day',
sensitivity: 0.05,
dateRange: 'LAST_7_DAYS'
});

Common Use Cases

Marketing Analytics

  • Campaign performance tracking
  • Channel attribution analysis
  • Content effectiveness measurement
  • Marketing ROI calculation

Customer Analytics

  • Behavior segmentation
  • Journey mapping
  • Lifetime value analysis
  • Churn prediction

Real-time Monitoring

  • Live traffic tracking
  • Campaign launch monitoring
  • Anomaly detection
  • Performance alerts

Executive Reporting

  • KPI dashboards
  • Automated reports
  • Custom visualizations
  • Trend analysis

Security Best Practices

  1. OAuth Security:

    • Use minimal required scopes
    • Implement token refresh
    • Monitor API usage
    • Rotate credentials regularly
  2. Data Protection:

    • Apply privacy labels
    • Respect data governance
    • Implement IP filtering
    • Audit data access
  3. Access Control:

    • Limit report suite access
    • Control user permissions
    • Monitor API calls
    • Set rate limits

Troubleshooting

Common Issues

  1. Authentication Errors

    • Verify client credentials
    • Check organization access
    • Validate redirect URI
    • Review scope permissions
  2. Report Errors

    • Check report suite ID
    • Verify metric/dimension IDs
    • Validate date ranges
    • Review segment syntax
  3. Rate Limiting

    • Monitor API usage
    • Implement caching
    • Use batch requests
    • Add retry logic

Getting Help